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MODEL OF A PLASTICALLY COMPRESSIBLE MATERIAL AND ITS

APPLICATION TO THE ANALYSIS OF THE COMPACTION OF A POROUS BODY

UDC 539.3A. G. Zalazinskii and A. P. Polyakov

This paper considers a model of a plastically compressible porous medium with a cylindrical-type
yield condition and its associated constitutive relations, which ensure independent mechanisms of
shear and compaction of the porous material. This allows one to use the well-known theorems of
plastic theory to analyze plastically compressible media and obtain analytical solutions for a number
of boundary-value problems, including those taking into account conditions on strong-discontinuity
surfaces. Results from full-scale studies of the structural periodicity of noncompact materials using
wavelet analysis were employed to choose a physical model for a porous body and determine the
properties and dimensions of a representative volume. The problem of extrusion of a porous material
through a conical matrix was solved.

In plastic theory for porous bodies, two basic approaches are currently being developed: the phenomenological
approach [1], based on experimental studies of flow curves for porous bodies, whose structural features are not
considered, and the structurally phenomenological approach [2], in which a physical model of a deformable body is
constructed taking into account structural features, and the constitutive relations are then verified experimentally. In
this case, the deformation of porous bodies can be considered within the framework of the mechanics of structurally
inhomogeneous media. At the mesolevel, the plastic-flow carriers are grains (conglomerates of grains) and pores,
which, in aggregate, constitute a representative mesovolume [3]. In the present paper, we consider constitutive
relations for a representative cell (mesovolume) of a plastically compressible body. The continual model of the
mechanics of continuous media was used to describe the deformation of a macrovolume composed of spatially
homogeneous microvolumes with different properties.

In the model of a structurally inhomogeneous body, the problem of choosing a representative volume is
solved, generally speaking, ambiguously. There are various approaches to this problem: from averaging of the
macrocharacteristics of the entire examined body over the representative volume to the consideration of the stochas-
tic characteristics at the macro- and microlevels using the theory of random functions [2]. In the development and
identification of the model, it is required to reveal the regularities of the structure of the material, including the
microlevel, to determine the spatial repetition frequency of elements (grains, pores, and defects), statistical char-
acterization of their distribution and anisotropy parameters, detection of the presence of scale invariance, etc. In
this case, it is structural periodicity that determines the choice of a representative volume. The periodicity in real
structures of porous materials was established experimentally in [4] using wavelet analysis.

1. Yield Conditions for Porous Bodies. In solving boundary-value problems of the mechanics of
pressure treatment of noncompact materials, it is necessary to allow for irreversible volumetric compressive (tensile)
strains. The limiting-state pyramid for a soil model [5] was considered even by Coulomb. The yield condition for
a plastically compressible medium in the form of a Coulomb pyramid bounded by a plane of constant hydrostatic
pressure (Coulomb–Mohr pyramid) was used in [1, 6]. Mises and Schleiher proposed an yield condition that in the
stress space corresponds to a circular cone bounded by a plane of constant hydrostatic pressure (Mises–Schleiher
cone) [5]. The indicated yield conditions are piecewise smooth. Ivlev and Bykovtsev [1] showed that the constitutive
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relations for such models can be considered using the theory of a strengthened plastic body with singular loading
surfaces.

A smooth yield condition for porous bodies is proposed in [7]. It is assumed that the plastic compressibility of
a deformed material is due to variation in the total volume of cracks and pores. This statement and the assumption
of statistical homogeneity of material were used to introduce a loading surface of elliptic type for a porous body:

α1τ
2 + α2σ

2 − σ2
s = 0, α1 = α1(θ), α2 = α2(θ).

Here τ =
√

0.5sijsij is the shearing-stress intensity (sij = σij − σδij , where σij are the stress-tensor components),
σ = σii/3 is the mean normal stress, σs is the yield stress for uniaxial tension, and θ = 1 − ρ is the porosity (ρ is
the relative density).

Smooth yield conditions are proposed in [8–10] using similar assumptions on the nature of plastic deformation
of a material with cylindrical and spherical pores. In the absence of porosity, the indicated smooth yield conditions
coincide with the Mises yield condition for compact materials.

Druyanov [6] proposed an yield condition of cylindrical type:

τ2 + σ2 = β2τ2
s , β = β(θ), τs = σs/

√
3.

This condition is simpler than the yield condition of the elliptic type.
The most general case of deformation for the given condition occurs at the edge of the yield surface, which

is the line of intersection of the Mises cylinder (state of pure shear) and the “bottom” (state of volumetric tension
or compression).

The cylindrical yield condition differs from the elliptic yield condition primarily in the absence of a dilatation
relation linking the characteristics of volumetric and shear strains. The corresponding model of a compacted body is
a model with independent shear and compaction mechanisms, which simplifies the definition of the compressive and
shear yield stresses in the form α2 = α2(θ) and α1 = α1(θ), respectively. The indicated moduli can be determined
separately using independent models [theoretical and (or) full-scale] for the stress state because they are not linked
by a dilatation relation. The cylindrical yield condition is appropriate for solving boundary-value problems of the
mechanics of plastic flow of porous media in the cases where dilatation is absent or negligible. For example, the
absence of compaction in the die hole during extrusion of a porous material was pointed out in [6]. In addition, the
use of the cylindrical yield condition simplifies the solution of boundary-value problems with discontinuous strain
and stress fields.

2. Physical Model of a Deformable Porous Body. The physical model of a plastically compressible
body studied in the present paper is treated as a deterministic system in the context of the mechanics of structurally
inhomogeneous (heterogeneous) media [11]. The validity of this approach is confirmed by studies of the structure
of surfaces of briquettes produced by compaction of a titanium sponge using wavelet analysis, and the detected
periodicity of real, outwardly random structures of materials at the microlevel with spatial repetition frequency of
elements of about 3–5 grain diameters [4].

For the body considered, the following assumptions are adopted:
— The pore sizes are many times the molecular-kinetic dimensions of the crystal lattice of the skeleton and

are many times smaller than the distances at which the macrocharacteristics of the medium change significantly;
— The mixture is monodisperse, the pores are present at each elementary volume in the form inclusions of

a certain average size;
— The effects related to the pulsation, rotation, and translation of pores are absent as well as mass transport

from the gas phase to the solid phase (skeleton) and back.
The packing model for a medium composed of particles of different sorts is shown in Fig. 1. The aver-

age porosity in the selected elementary volume is defined by the expression θ̃ =
1
N

θmax∑
θ1

θiñ(θ), where ki is the

characteristic pore size (Fig. 2).
Using the indicated assumptions and the structurally phenomenological approach, Zalazinskii [12] consid-

ered a model of a medium which represents a conglomerate of statistically homogeneous, close-packed particles of
isometric shape with discontinuity flaws localized on its boundaries. After deformation, the particles take the shape
of polyhedra and form regular structures — lattices similar to crystallographic ones [13]. Defects — pores filled
with gas — are located at the lattice points. A diagram of the packing is given in Fig. 3a.
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Fig. 1 Fig. 2

Fig. 1. Packing model for particles of different sorts: 1 and 2 are structure Nos. 1 and
2, respectively, and 3 is the pore.

Fig. 2. Pore size distribution.

During plastic compaction of close-packed particles which initially had point contacts to one another, the
particles fill in the free space (pores). Under loading, the point contacts become contact surfaces; the shape of the
particles changes, becoming similar to the shape of polyhedra; the pores decrease, remaining polyhedra to a certain
moment, and then, at small porosity, they assume a spherical shape [12].

In the examined model of a porous compacted body, it is necessary to determine the developed plastic flow
loads and the changes in the shape and volume of the pores. By virtue of the statistical homogeneity of properties
of the deformable material, in order to derive physical equations, it suffices to solve the problem for a characteristic
cell that represents a statistical ensemble.

For definiteness, in orthogonal coordinates, we consider a certain volume filled with macroparticles in the
shape of polyhedra (Fig. 3b). Each cell of a plastically compressible media exhibits piecewise-homogeneous prop-
erties and consists of tetrahedra, which form a rigid-plastic skeleton and occupy volume Ω = ωf ∪ ωp (ωf is the
volume of a particle and ωp is the volume of a pore). The outer surface of the cell S = SF ∪ SV is loaded by a
system of surface forces λF = {λFi} (λ is an uncertain factor, which increases from zero). The boundary conditions
are written as σijnj = λFi (x ∈ SF ) and vis = v0

is (x ∈ SV ). For the cell inside the volume Ω, the relationship
between the components of the stress deviator and the strain rate tensor is given by

sij = 2τs(x)eij/H(x), (1)

where τs(x) = τs for x ∈ ωf and τs(x) = 0 for x ∈ ωp, eij = ξij − ξδij/3 (ξij are the strain rate tensor components),
and H =

√
2eijeij is the strain-rate intensity.

With increase in external forces, the cell enters the general yield state when the load reaches the limiting
value λ∗F . To determine ultimate load, it is generally necessary to use the ideal plastic limit theorem for structurally
inhomogeneous bodies [12, 14]: ∫

S

F 0
i vi ds 6

M∑
m=1

∫
ωm

[τsn(ki, θ)H + σn(ki, θ)ξ]i dω. (2)

Here the varied quantities are H and ξ, M is the number of cells, and m is the cell number.
Inequality (2) contains a varied function of the strain field. Upon transition from the kinematically permis-

sible state of the cell to a real state, the inequality becomes the equality.
3. Derivation of Constitutive Relations. In the derivation of constitutive relations, we calculated

energy dissipation for the tetrahedra included in the unit cell, using relations of the finite element method. It was
assumed that all tetrahedra, except for the tetrahedron representing a pore, were rigid bodies and moved relative to
one another by sliding along their faces which are acted upon by normal and shearing stresses. The shearing stress
value was set equal to the shear yield stress of the compact material, and the normal stresses were determined from
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Fig. 3. Diagram of particle packing in the model of a porous body (a) and finite-
element discretization of the cell (b).

the equilibrium equations for the tetrahedra. The calculations were carried out for the case of volumetric uniform
compression of the porous cell in the field of mean stress σ and for the case of strain of pure shear along the planes
weakened by defects (pores) of polyhedral or spherical shapes.

In the calculation of the gas pressure in a pore q, it was assumed that removal of the gas from the pores
was ensured by filtration until attainment of a certain critical porosity θ∗, after which the gas pressure increased
according to the equation

q = q∗(θ∗/θ)(1− θ)/(1− θ∗),

where θ∗ and q∗ are the porosity and internal pressure, respectively, in the pores at the moment the removal of the
gas ceases (θ < θ∗).

Calculation and approximation of results yielded the following relations for the compressive σ∗s and shear
yield stresses τ∗s :

σ∗s = −(2/
√

3)τs ln (η/θ) + q, τ∗s = τs(1−Kθζ) (3)

(K, η, and ζ are parameters that characterize the geometry of the defects). The calculations showed that the
indicated parameters can take the following values: 1 6 K 6 1.63, η 6 1, and ζ = 2/3. For randomly located
defects of isometric shape, K = 1, η = 1, and ζ = 2/3.

Relations (3), obtained by solving test problems of determining the compressive and shear yield stresses for
a porous body, are general in nature. Real deformation processes, taking into account plastic compressibility, are
characterized not only by a decrease of porosity but also by a change in the shape of particles and pores. At the
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initial moment, a porous body can be treated as an isotropic medium with macrocharacteristics averaged over the
volume. Under deformation, irrespective of the scheme (except for the trivial case of volumetric compression),
porous bodies inevitably acquire a certain degree of anisotropy. Neglect of the latter can introduce large errors
into results of mathematical modeling. The parameters K, η, and ζ depend not only on the porosity and shape
of the pores but also on the nature of anisotropy of the medium. Saltykov [15] showed that the properties of the
materials characterized by three-dimensional packing of particles are determined with reasonable accuracy by the
structural parameters of the principal planes of the material deformed. Generally, to describe the regularities of
plastic deformation for porous materials, it is necessary to specify the structural parameters of the characteristic
volume element for the three principal planes. In the principal axes, Eq. (1) becomes

σ11 = −(2/
√

3)τs ln (η11/θ) + 2τs(1−K11θ
ζ11)(ξ11 − ξ/3)/H,

σ22 = −(2/
√

3)τs ln (η22/θ) + 2τs(1−K22θ
ζ22)(ξ22 − ξ/3)/H,

σ33 = −(2/
√

3)τs ln (η33/θ) + 2τs(1−K33θ
ζ33)(ξ33 − ξ/3)/H.

In this case, in formulas (3), we have K =
3∏
i=1

Kii, ζ =
3∏
i=1

ζii, and η =
3∏
i=1

ηii.

The above relations and the cylindrical yield condition were used to solve a number of problems, in particular,
the problems of two-side compaction of a porous body and extrusion of a porous material in an axisymmetric
formulation [12].

4. Strong-Discontinuity Surfaces in a Plastically Compressible Medium. The theory of discon-
tinuous solutions was originally developed for problems of hydrodynamics. For discontinuities of the type of shock
waves, exact analytical dependences, known as the Rankine–Hugoniot relations, were obtained. The indicated re-
lations were used to solve plastic problems with the Mises yield condition [5] and were considered in many other
papers. The conditions on surfaces of strong discontinuity of rates for plastically compressible media were studied
in [6, 16, 17].

Following [18], we consider a discontinuous solution as a sequence of continuous motions for the system of
equations of a plastically compressible medium. In thin layers with continuous but abrupt variation of motion
characteristics, we specify appropriate external actions, heat influxes, and other types of energy. In passing to
the limits, we assume that the total characteristics of additional external actions in the form of mass forces can
have, generally speaking, nonzero values. In this case, the basic equations of the mechanics of continuous media —
the continuity, momentum, and energy equations — should hold. The momentum equation are eliminated from
consideration because for momenta that are external for the medium, the surface distribution density is always
equal to zero.

In constructing discontinuous solutions in plastic theory, it is commonly assumed that mass forces are
absent. However, as is indicated in [18], discontinuous solutions can be constructed by introducing appropriate
external actions that are consistent with the adopted model of the medium. Although a few types of special mass
forces are encountered in practice, it is impossible to characterize the class of all possible fields of these forces.
Generally, the magnitude of these forces is not subjected to any restrictions and is determined from the momentum
equation [19]. In constructing discontinuous solutions for a multicomponent medium, mass-force components are
introduced, in particular, in [20]. In this case, it is pointed out that the nature of these forces must be specified
for the physical process studied. For models of two-component media “gas–solid particles,” similar actions in the
form of surface-force components at a discontinuity (and the additional term in the energy equation associated
with the indicated force) are considered in [21] and [9, 22]. In this case, the magnitude of the surface force was
chosen from the condition of specified flow regimes at discontinuities. Thus, for the passage of a multicomponent
medium through a discontinuity surface, the constitutive relation is the relation between the interphase interaction
forces and the solid-phase particle interaction forces. Therefore, the conditions on a strong-discontinuity surface in
a plastically compressible medium can be considered in terms of energy, without assuming that the mass forces are
equal to zero.

Let us consider a discontinuity surface Sh, at whose point M, the velocity along the normal to the surface
is equal to vs = lim

∆t→0
∆s/∆t (∆s is the distance traveled by the point M along the normal for time ∆t) (Fig. 4).

At the point M, we introduce a moving local coordinate system (n, τ, z), which moves uniformly, rectilinearly, and
translationally. At the time considered, it has velocity equal to the velocity of the point M. Let the material flow
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Fig. 4. Discontinuity surface.

from region 1 of the discontinuity surface to region 2 and the n axis be directed normally to Sh toward region 2.
Then, in the fixed coordinate system, the general integral equations of continuity, momentum, and energy lead to
the following relations (subscripts 1 and 2 correspond to the regions of the discontinuity surface Sh):

ρ1(vs − vn1) = ρ2(vs − vn2); (4)

pn2 − pn1 = ρ1v1(vs − vn1)− ρ2v2(vs − vn2)−R; (5)

W + pn2 · v2 − pn1 · v1 = ρ1(vs − vn1)(v2
1/2 + U1)− ρ2(vs − vn2)(v2

2/2 + U2) + q∗n2 − q∗n1. (6)

Here pn is the stress vector, U is the internal energy density, lim
h→0

∫
V

ρF dτ =
∫
Sh

R dσ, R is the surface distribution

density of external mass forces on Sh, lim
h→0

∫
V

(
ρF · v + ρ

dq∗m
dt

)
dτ =

∫
Sh

W dσ, W is the power flux density of mass

forces ρF , q∗n is the total external influx of additional specific energy, and dq∗m/dt is the total specific additional
energy influx due to mass sources per unit time.

Converting to vector components, we write conditions (5) and (6) as

[pni] = −ρ(vs − vn)[vi]−Ri, W +
∑
i

[pnivi]− [qn] = −ρ(vs − vn)
2

(∑
i

[v2
i ] + [U ]

)
, i = (n, y, z),

where square brackets denote a jump of a quantity and [v] = v2 − v1.
We specify the heat flux by the Fourier law qi = −α gradT (α is the thermal conductivity) and desig-

nate W ′ = W − ρ(vn − vs)
2

∑
i

[v2
i ]. After transformations, we obtain the expression

W ′+
∑
i

[pnivi] = σ2ξ+τ2H− lim
h→0

∫
V

(∂σnn
∂n

(vn1 − vn)+2
∂σny
∂n

(vy1 − vy)+2
∂σnz
∂n

(vz1 − vz)
)
dω = σ2ξ+τ2H−I,

where

I = lim
h→0

{∫
V

{∂σ
∂n

(vn1 − vn)
}
dω +

∫
V

∂τ

∂n

{enn(vn1 − vn) + 2eny(vy1 − vy) + 2enz(vz1 − vz)
H

}
dω

+
∑
i

ai
6

∫
V

τ

H3

{(∂2vi
∂n2

∂vj
∂n
− ∂2vj
∂n2

∂vi
∂n

)}{(∂vj
∂n

(vi1 − vi)−
∂vi
∂n

(vj1 − vj)
)}

dω

}
, (7)

(
i

j

)
=
(
n y z

y z n

)
, an = az = 4, ay = 3.
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Let us consider the integrals under the summation sign on the right side of (7). In the neighborhood of the
point M , the velocity components vi are expanded in a Taylor series in the coordinate n:

vi = vi1 +
M∑
m=1

∂mvi(0)
∂nm

nm

m!
.

We assume that for each pair of subscripts (i, j), the following relation holds: ∂mvi(0)/∂nm = βij ∂
mvj(0)/∂nm

(βij = const). Then, the expressions in braces are equal to zero for all three integrals, and the last term on the
right side of (7) can be neglected.

Let us consider the first integral on the right side of (7). Expanding σ and vn in Taylor series and setting
∂mσ(0)/∂nm = βσn ∂

mvn(0)/∂nm (βσn = const), we obtain

lim
h→0

∫
V

{∂σ
∂n

(vn1 − vn)
}
dω = −1

2
(σ2 − σ1)(vn2 − vn1) = −1

2
[σ]ξ.

Similarly, for the second integral on the right side of (7), we have

lim
h→0

∫
V

∂τ

∂n

{enn(vn1 − vn) + 2eny(vy1 − vy) + 2enz(vz1 − vz)
H

}
dω = −1

2
[τ ]H.

As a result, the power dissipation rate Dh on the discontinuity surface is equal to

Dh =
1
2

((σ2 + σ1)ξ + (τ2 + τ1)H)− [qn] +
1
2
ρ(vn − vs)

∑
i

[v2
i ]. (8)

In solving boundary-value problems, it is more reasonable to express the quantity Dh in terms of the yield
stresses σ∗s and τ∗s . When the cylindrical yield condition is used, the passage to the limit is obvious because the
conditions σ = σ∗s and τ = τ∗s should be satisfied. For the elliptic yield condition, we use the following formulas [6]:

σ = (ξ/Q)(σ∗s )2, τ = (H/Q)(τ∗s )2, D̄ = Q = (H2(τ∗s )2 + ξ2(σ∗s )2)1/2.

For the power dissipation rate, the elliptic yield condition gives a more complex expression than (8):

D̄h = (H2(τ∗s2)2 + ξ2(σ∗s2)2)1/2−1
2
{H2((τ∗s2)2 − (τ∗s1)2) + ξ2((σ∗s2)2−(σ∗s1)2)}1/2 − [qn] +

1
2
ρ(vn − vs)

∑
i

[v2
i ]. (9)

Relations (8) and (9) are used in solving problems of developed plastic flow, in which the elastic components
of stress tensors and strain rates can be ignored. For the cases where it is necessary to allow for elastic stresses
and strains, similar results are obtained in [16, 17]. Burenin et al. [16] studied a yield condition in the form of
a Coulomb–Mohr pyramid. Sadovskii [17] examined the properties of the Prandtl–Reiss equations for dynamic
problems.

5. Extrusion of a Porous Material. We construct a solution of the boundary-value problem of extrusion
of a porous material through a conical die (Fig. 5) under plane deformation with a yield condition of cylindrical
type. Friction is ignored. We assume that plastic strains are concentrated on the discontinuity lines OA and OB,
which are interfaces between regions 1, 2, and 3 moving as rigid bodies. Let the relative densities and velocities in
each zone be equal to ρi and vji (j = x, y; i = 1, 2, 3), respectively. We assume that ρ1 and v1 are specified. Then,
the simplest kinematically permissible velocity field is written as (see, e.g., [23])

vx1 = v1, vx2 = v2 cos γ, vx3 = v3, vy1 = 0, vy2 = −v2 sin γ, vy3 = 0.

Converting to the local axes (n, τ) on the discontinuity lines, for jumps of the velocity components, we obtain
the expressions

[vn] = (v2 cos γ − v1) sinϕ− v2 sin γ cosϕ,

[vτ ] = −(v2 cos γ − v1) cosϕ− v2 sin γ sinϕ on OA,
(10)

[vn] = (v3 − v2 cos γ) sinψ − v2 sin γ cosψ,

[vτ ] = (v3 − v2 cos γ) cosψ + v2 sin γ sinψ on OB.
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Fig. 5. Diagram of the calculation of extrusion of a porous material.

The velocities v2 and v3 are determined from the kinematic compatibility conditions [23]: [vx]−[vy] tan ϕ = a

on OA and [vx] + [vy] tan ψ = b on OB. In this case, at the point O, the following conditions should be satisfied:
[vx] = v3 − v1 and [vy] = 0. Hence it follows that

v2 =
1

sin γ
v1

cot γ − tan ψ
, v3 = v1

cot γ + tan ϕ

cot γ − tan ψ
.

Formulas (10) can be written as

[vn]1 = v1 sinϕ
tan ψ − cot ϕ
cot γ − tan ψ

, [vτ ]2 = −v1 sinϕ
1 + cot ϕ tan ψ

cot γ − tan ψ
on OA,

[vn]1 = v1 sinψ
tan ϕ− cot ψ
cot γ − tan ψ

, [vτ ]2 = v1 sinψ
1 + cot ψ tan ϕ

cot γ − tan ψ
on OB.

The densities ρ2 and ρ3 are determined directly from the condition ρivni = const but it is easier to use the
formulas

ρ1vn1 = ρ2([vn]1 + vn1), vn1 = v1 sinϕ, µρ1v1 = ρ3v3,
where µ = h1/h2 is the reduction (extract).

To eliminate the angle ϕ from the equations, we use the kinematic relation (h1 − h2) cot γ = h1 cot ϕ
+ h2 cot ψ or cot ϕ = cot γ − (cot γ + cot ψ)/µ.

With allowance for (8), the equation for calculating the extrusion force is written as

p/τs = {(σ1 + σ2)(tan ψ − cot ϕ) + (τ1 + τ2)[4(tan ψ − cot ϕ)2/3 + 1 + cot ϕ tan ψ]1/2

+ [(σ2 + σ3)(tan ϕ− cot ψ) + (τ2 + τ3)[4(tan ϕ− cot ψ)2/3 + 1 + cot ψ tan ϕ]1/2]/µ}/(2(cot γ − tan ψ)), (11)

where the dependences σi = σi(θi) andτi = τi(θi) are determined according to (3) (σ = σ∗s , τ = τ∗s , and θ = 1− ρ).
For an incompressible material, it suffices to set [vn]i = 0, eliminating the terms due to irreversible volume

changes from formula (11).
The calculations are carried out for two intervals of initial porosity: θ1 = 0.2–0.4 (moderate porosity) and

0.06–0.12 (low porosity). The cone angle γ is set equal to 45◦. The value of the angle is chosen for the following
reasons. As is known, the best power parameters of the extrusion process are ensured for 30◦ < γ < 45◦ (see, e.g.,
[6, 12]). At the same time, for small angles γ and large µ, the accuracy of pressure determination by the adopted
calculation scheme reduces considerably. In this case, it is recommended to complicate the calculation scheme by
increasing the number of rigid blocks [24]. From the calculations it follows that for γ = 30◦ and µ > 10, the pressure
increases sharply.

Calculation results are shown in Figs. 6 and 7. The quantity µ was varied in the range of 6–10. In the
calculations, it was assumed that K = 1, η = 1, and ζ = 2/3.

From an analysis of the results it follows that at moderate initial porosity, extrusion without compaction is
possible for minimum reduction (see Fig. 6c). In this case, the pressure corresponds to an incompressible material,
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Fig. 6. Calculated extrusion parameters at an initial porosity θ1 = 0.2–0.4: (a) pressure p/(
√

3τs); (b) residual
porosity; (c) jump of porosity.

Fig. 7. Calculated extrusion parameters at an initial porosity θ1 = 0.08–0.12: (a) pressure p/(
√

3τs); (b) residual
porosity; (c) jump of porosity.
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for which it is necessary to set τs = τ∗s (θ1). With increase in µ, the porosity decreases sharply: θ = 0.12–0.15 (see
Fig. 6b). A similar pattern is observed for low initial porosity, although its jump in absolute value is much smaller
than that in the first case. For reduction µ = 10, a nearly nonporous state (θ < 0.01) (see Fig. 7b) is reached. In
this case, p/(

√
3τs) = 3.7–4.0, which is in fair agreement with calculated and experimental data for a wire produced

from a titanium sponge [12].
This work was supported by the Russian Foundation of Fundamental Research (Grant No. 01-01-96465)
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